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Abstract. A parametrisation of the Boltzmann weights of Baxter’s symmetric eight-vertex 
model is derived, using Cherednik’s representation of the Zamolodchikov algebra, in terms 
of theta functions based on the weight lattice of SU(2). The Yang-Baxter equations are 
satisfied as a consequence of the associativity of the Zamolodchikov algebra. The derivation 
makes the connection of Baxter’s model to the spin-f representation of SU(2) explicit. 

Baxter’s symmetric eight-vertex model [ 13 is central to studies of exactly solvable lattice 
models in two dimensions: all known off-critical solutions can be related to it, either 
as special cases, or generalisations of it. For reviews of recent developments, see [2,3]. 

The basic observation that underlies generalisations of Baxter’s model can be 
phrased as follows: the model is related to the spin-f, or two-dimensional representation 
of the Lie group SU(2), the group of angular momentum, in the sense that the variable 
placed on each bond can take either one of two states; these correspond to the weights 
of the two-dimensional representation of SU(2): spin-up and spin-down. The purpose 
of this work is to make this connection explicit. 

Accordingly, we can think of generalisations that correspond to larger irreducible 
representations of SU(2), and beyond that to any irreducible representation of any 
Lie group [4-IO]. 

A basic step towards solving a lattice model exactly, is to obtain a parametrisation 
of the Boltzmann weights that satisfies the Yang-Baxter equations. If the model is 
off-critical, then the parametrisation is given in terms of elliptic functions: infinite 
series in a complex parameter q, the ‘nome’, that parametrises the departure from 
criticality. In the critical limit, q tends to zero, and the Boltzmann weights reduce to 
trigonometric functions. 

However, Baxter’s original parametrisation of the Boltzmann weights does not 
make the connection with SU(2) manifest. In this work, we wish to derive a parametrisa- 
tion of Baxter’s model, in a way that makes this connection clear. The point of the 
excercise is to formulate things in such a way that generalisation to models based on 
other representations and/or other Lie groups becomes straightforward. 

The derivation is based on a representation of the Zamolodchikov [ 1 I ]  algebra 
proposed by Cherednik [12]. In addition to being simple and systematic, it seems 
extendible to more general vertex models, where the structure of the Boltzmann weights 
is not transparent, or even unknown. 

A necessary condition for a lattice model to be exactly solvable is that the number 
of conserved charges to be equal to the number of degrees of freedom. In the 
infinite-lattice limit, one should have an infinite number of conserved charges. The 
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operators corresponding to these charges can be obtained as terms in a Taylor expansion 
of the transfer matrix with respect to a ’spectral parameter’. 

The dependence of the transfer matrix on the spectral parameter is equivalent to 
the presence of a one-parameter family of commuting transfer matrices. A sufficient 
condition that ensures the presence of a family of commuting transfer matrices is that 
the Boltzmann weights of the model satisfy the Yang-Baxter equations. Obtaining new 
exactly solvable models starts with finding new solutions to the Yang-Baxter (YB) 
equations. 

In [ l l ] ,  Zamolodchikov proposed that the Y B  equations can be regarded as the 
associativity condition of a non-commutative algebra: consider an  algebra generated 
by the set { A , ( x ) } ,  where i is a discrete index, x is a continuous parameter, and the 
group relation is the ‘braiding’ operation: 

If the algebra is associative: 

then the structure constants Sfj’(x)  satisfy 

which are the Y B  equations, once we interpret Sf;‘(u) as a Boltzmann weight, and the 
argument U as a spectral parameter. We can find new solutions to the Y B  equations 
by looking for new realisations of the Zamolodchikov algebra (1). 

Note that one can, in principle, think of the Y B  equations as functional equations, 
and proceed to find solutions to them. But this is not easy. Our impression is that it 
should be easier to find new candidates for associative Zamolodchikov algebras. 

In [12] Cherednik proposed a realisation of the Zamoldochikov algebras, in terms 
of a ring of theta functions, that leads directly to off-critical Boltzmann weights that 
satisfy the Y B  equations. Let us begin with a few definitions. 

Our main reference to theta functions is [13]. The classical theta functions, of 
degree m, nome q, characteristic p, and complex argument z are defined as 

(4) 

Notice that this definition is different from that used in [20,21]:, we have only .one 
characteristic rather than two, since the second can always be absorbed in z. Further- 
more, the exponential factor, with parameter t, is added so that the properties of the 
theta functions under modular transformations (reparametrisations that cannot be 
deformed to the identity) can be written in a simple way. We will not need these here, 
so t will always be set to zero in this work. We will d rop  the third subscript of 0 from 

For a given degree m, there are m independent theta functions, with characteristics 
p = (0,. . . , m - l}, in the sense that they span the space of theta functions of degree 
m :  Sm. This statement is made explicit in (16) below. 

The direct sum of spaces of degree-m theta functions, 3 = O m i Z s m ,  ?% is called 
a ring of theta functions. For precise definitions and  details see [13]. 

Next we turn to Cherednik’s realisation of the Zamoldochikov algebra [12]. Since 
Cherednik’s work is quite technical, we will follow the clear exposition given in 
appendix I 1  of [ 141, with modifications that suit our purposes. 

O p , m , , ( ~ )  = 1 q m ( y ~ z  e - x r i m y :  

y t  Z + I , /  ni 

now on. 
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Think of %,,, as a vector space spanned by the independent theta functions, and  

Consider the operators that act on l@p.m(z)) as follows: 
define a 'state' in 5, by l@p,m(z)) .  

A,,m(x)l@,,.i(y))=@,,m(Y-x)IO,,",(y- ( 5 )  

That is, they act on l@p,m(z)) by shifting the argument by a constant 7, and 
multiplication by a degree-m theta function. The results of multiplying two theta 
functions of degrees m and n, can be expanded in terms of degree m + n theta functions: 

@p,,ml(zl)@pz,m2(zr) = c c y  p I + p2+  m I y. m I + m2 ( Z I  + ~ 2 )  (6) 

c y  = @ m 2 p  I - m p2+ m ,  m2 y , m ,  m2( m I + m z )  ( Z I  - ~ 2 ) .  ( 7 )  

y E Z mod ( m, + m2 )Z 

where the expansion coefficients are 

Thus the operators A,,,(z) take us from one subspace in the ring to another. Clearly, 
the action of AL.nz(z), as given in ( 5 ) ,  is not the most general that one can consider, 
but it is precisely what we need in this work. 

Next, we consider the quadratic actions: 

Both operations take the initial state I@,,",(y)) from ?hm to some final state in f%3m. 
Regarding the final states as vectors in ?%,,,,, we can relate them by a transformation 
matrix: 

A,, tn ( x 1 A,, m ( x )I@ ,, m ( Y 1) = Sy(x - Y ) Ak, m ( Y  At,", (x)I@ i , m  ( Y  1). (9) 

A, . , , ( z )  + @,.m(z). (10) 

0 r.m (XI 01.m ( Y  = sl;l ( X  - .V ) 0 A,", ( Y 10 ,.m (x ). (11) 
Since the algebra of products of theta functions is associative, the structure con- 

stants, Sy(x - y ) ,  satisfy the Y B  equations. They are given in terms of theta functions 
and, therefore, are candidates for the Boltzmann weights of an  off-critical model. This 
is, essentially, Cherednik's realisation of the Zamolodchikov algebra. Notice that it 
requires that the monomials of degree two in the theta functions, used to represent 
the generators {A,,,,, (x)} ,  be independent. 

But how can we obtain the Boltzmann weights of a specific lattice model? Let us 
consider Baxter's symmetric eight-vertex model. The allowed vertices are shown in 
figure 1. 

Given ( 6 ) ,  it is natural to express the operators A,,,(z) in terms of theta functions: 

Using (10) in ( 9 ) ,  we obtain 

The model is symmetric since we take 

u , = u 2 = a  ~ ~ = u ~ = b  wz = W 6  = c u , = u g = d .  (12) 

Figure I .  T h e  vertices of the  symmetric eight-vertex model  
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The general eight-vertex model, with no symmetry as in (12), has not been solved. Let 
us consider a general vertex with bonds labelled as in figure 2: We can think of a 
vertex as a diagram describing an elastic two-body scattering, with two incoming, and 
two outgoing states. Notice that we could choose any two states to be incoming, and 
the other two outgoing. Given the symmetries of the model, there are three independent 
choices, corresponding to the three channels of elastic two-body scattering. We will 
take the states i and j as incoming, and k and I as outgoing. 

We wish to associate a theta function with each state with a definite index, then 
compute the Boltzmann weight from (11). Since each index has two values, we wish 
to have a two-dimensional vector space of theta-functions. For that we take m = 2 in 
(4). The rest of the computation is straightforward, and has been outlined in [ 141. 

We wish to repeat this computation in a way that makes the connection with the 
spin-; representation of SU(2) explicit. For that we propose to use a Cherednik-type 
representation of the Zamolodchikov algebra based on theta functions related to SU(2).  
We will see that they reduce to those used above. 

There is a direct generalisation of the classical theta functions (4) to functions 
defined on regular r-dimensional lattices [15]. Following the notation of [ 131, these 
are defined as 

(13) in 1 y~ y 1 - 2  xi t i l  i y 1: 1 @;.“A4 = c 4 e 
y i  L++:,,,  

where L is an r-dimensional lattice, p and z are r-dimensional vectors. 
An important class of theta functions are those based on lattices associated with 

Lie groups, as will be briefly explained in the following subsection. The case we are 
interested in is the simplest non-trivial one: SU(2).  

Our main references on lattices associated with Lie groups are [ 16, 171. For reviews 
see [18, 191. Here we wish to recall some basic facts. In  a matrix representation of a 
rank r Lie group, r generators can be simultaneously diagonalised. They form the 
‘Cartan subalgebra’ of the group. For SU(2),  r = 1, and only one generator can be 
diagonalised. The states that form the irreducible representations of the group are 
eigenvectors of the Cartan subalgebra. The corresponding eigenvalues are the ‘weights’ 
associated with the representation. 

For a rank r group, the weights form r-dimensional vectors, considered as arrows 
with their tail-ends at the origin; their end points are the vertices of an r-dimensional 
lattice called the weight lattice of the group. For SU(2) the lattice is one-dimensional, 
and shown in figure 3: 

The normalisation of the weights will be explained below. The weights of the adjoint 
representation-for SU(2) this is the spin-1, or three-dimensional representation-are 
called the ‘roots’. The set of all roots are linear combinations of r ‘simple’ roots, that 
generate a ‘root lattice’. The root lattice of SU(2) is shown in figure 4. The normalisation 

k 1 

Figure 2. A general vertex. 
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Figure 3. The weight lattice of SU(2)  

- - A 0 .  e - - - = 0 .  

Figure 4. The root lattice of SU(2) .  
- 2  $2 - A  0 i-7 2n 

of the roots is such that the norm of a simple root is 2. The weight lattice is dual to 
the root lattice: it is generated by the ‘fundamental weights’, which are defined as the 
duals to the simple roots. This explained the normalisation of the weights in figure 3. 
Notice that the root lattice is a sublattice of the weight lattice. This is the case for all 
Lie groups, with the exception of E 8 ,  where the root lattice is self-dual and identical 
to the weight lattice. 

The inner product of the vectors that generates a lattice define a quadratic form 
that acts as a metric on the lattice. The quadratic form corresponding to a root lattice 
is the ‘Cartan matrix’. The quadratic form of the weight lattice is the inverse Cartan 
matrix. In the case of SU(2),  these are scalars. 

We can write down a theta function based on a lattice L as in [ 131. We are interested 
in the case where the characteristics take values in the dual lattice L*. In that case, 
the vector space Thm is spanned by a set of theta functions of degree m, with 
characteristics p E L mod mL* [ 131. The obvious choice is to write down theta functions 
based on the root lattice L of a group with characteristics taking values in the weight 
lattice L* modulo the roots. 

We can do that for the lattices based on SU(2), and obtain a parametrisation of 
the symmetric eight-vertex model that way, since the unit cell of the SU(2) root lattice 
contains precisely two vertices from the weight lattice. However, the characteristics 
will not take values directly in the weights of the spin-f representation. Therefore, we 
wish to proceed differently. 

We start with theta functions based on L*, the weight lattice of SU(2), with 
characteristics taking values in the root lattice L. But since L is only a sub-lattice of 
L*, we will have to work with level m > 1 theta functions, so that the characteristics 
take values in L mod mL*, and choose m such that there are precisely two independent 
characteristics. This way, the characteristics, and consequently the incoming and 
outgoing states in a vertex, can be directly related to the weights of the spin-f rep- 
resentation. 

It is convenient to work in terms of an orthonormal basis, and to encode the 
geometry of the lattice in terms of a matrix that acts as a metric on the lattice. In the 
case of the root lattices, this is the Cartan matrix. 

In the normalisation where the norm of the simple roots is 2, the Cartan matrix of 
SU(2) is the scalar 2. The inverse Cartan matrix is f .  The degree m theta functions 
based on the weight lattice of SU(2) are: 

@ t , m , , ( z )  = e CL E Z m  (14 )  -2r r tmr  q m y  I /2  y e - 2 n i m y  I / 2  z 

v c z + r / m  

where Zm = (0, 1, . . . , m - I}.  The only possibility that leads to a two-dimensional space 
of theta functions, where the characteristics have the correct periodicity properties is 
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m = 4. In this case, the characteristics, that take values in L mod 4L*, can be chosen 
as {-4, i} or (0, I}. The two choices are equivalent, since they describe different bases 
of the same vector space. The set {-f, 1, coincides with the weights of the spin-; 
representation. 

To simplify the computations, we will make use of the invariance under change of 
basis, take the characteristics in the set (0, I } ,  and write our theta functions as 

Note that these are identical to what one obtains starting with theta functions based 
on the root lattice and m = 1. These are precisely the theta functions used in [14] to 
compute the weights of the symmetric eight-vertex model. Here, we had a clear look 
at where they come from. Next we proceed with the derivation of the  Boltzmann weights. 

For each vertex, we associate theta functions with the incoming states, take their 
product, and  expand i t  in terms of a basis of degree 2m theta functions using (6). 
Then we d o  the same for the outgoing states, and  relate the two expansions using (11). 
Next, we solve for the Boltzmann weights, using the orthogonality relation 

@:.,,,(z)@$,.,,,(z') dn  - 6L 

where z '  = z +constant, and  the precise 
given in [ 131. The proportionality factor 
out in the final results. The answer is 

definition of the integration measure dn  is 
will not be interesting to us, since i t  cancels 

I have c h e c k d  that (17) satisfies the Y B  equations using series expansions up to ten 
orders in q, for different values of the arguments. Equation (17) is not manifestly 
identical to Baxter's parametrisation, which is: 

a = @ o , 1 , " ( 2 7 7 ) @ 0 , 1 , o ( A  - ~ ) @ i ) , i , i ( A  + 7 7 )  

b = @ ~ ~ , 1 , ~ 1 ( 2 7 7 ) @ ~ , , i , i ( A  - T)@o,i.ii(A + 7 7 )  
(18) 

c = @o, i ,1 (277)@o, l , o (A  - 17)@o,l,o(A + 7 7 )  

d = @ o . i . i ( 2 ~ ) @ 0 , i , i ( A  - ~ ~ ) @ o , i , i ( A  + 7 7 ) .  

An analytic proof that both parametrisations are equivalent is beyond the scope 
of this work. Here we content ourselves by remarking that in the scaling limit, both 
parametrisations coincide, up  to overall factors, and for suitable choices of the constants 
7. Furthermore, as we have seen, the theta functions used in this work reduce to those 
obtained in [ 141, and their results, obtained following the same method as ours, were 
shown to be equivalent to those of Baxter. 
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